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Abstract 
 
CKD represents a global public health problem with high disease-related morbidity and 

mortality. Since the etiology of CKD is heterogenous, early recognition of patients at risk for 

progressive kidney injury is important. We evaluated the tubular epithelial-derived glycoprotein 5 

dickkopf-3 (DKK3) as a urinary marker for the identification of progressive CKD in a non-CKD 

cohort of patients with chronic obstructive pulmonary disease (COPD) and in an experimental 

model. 

 In COSYCONET, a prospective multicentre trial comprising patients with stable 

COPD (N=2,314, follow-up 37.1 months) urinary DKK3, proteinuria and estimated glomerular 10 

filtration rate (eGFR) were measured at baseline and tested for its association with trajectories 

of eGFR, forced expiratory volume in one second (FEV1), and 6-minute walking distance (6-

MWD). We explored the impact of DKK3 in wild-type and Dkk3-/- mice subjected to cigarette 

smoke-induced lung injury combined with a CKD model (CS-CKD model).  

 Urinary DKK3, but not proteinuria or baseline eGFR identified patients with declining 15 

kidney function during follow-up (OR: 1.55, 95% CI: 1.16-2.08). In particular, DKK3 was 

associated with a significantly higher risk for declining eGFR in patients with eGFR 

>90ml/min/1.73m2 and proteinuria <30mg/g. DKK3 was also associated with declining FEV1 

(OR 3.36, 95% CI: 2.22-5.08) and 6-MWD (OR 1.56, 95% CI: 1.09-2.22). In the CS-CKD 

mouse model, genetic abrogation of DKK3 resulted in reduced pulmonary inflammation and 20 

kidney fibrosis, and preserved kidney function.  

 These data highlight DKK3 as a tubular marker for the early identification of patients 

with inapparent progressive CKD and above that with adverse outcomes in patients with 

COPD.  
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Introduction 

Chronic kidney disease (CKD) represents a global public health problem affecting hundreds of 

millions of patients worldwide  (1). Between 2005 and 2015, the global prevalence of CKD has 

increased by 26.2 % (2). In the general population, even a slightly reduced kidney function is 

already associated with higher mortality (3), and the mortality rate is almost five-fold higher in 5 

patients with severely impaired kidney function compared to the non-CKD population (4). The 

etiology of CKD is heterogenous, however, and early recognition of patients at risk for 

progressive kidney injury is therefore important (1). Furthermore, the individual course of CKD 

may be highly variable with patients showing long-term stably reduced glomerular filtration rate 

(GFR) without any signs of progression and others being characterized by a rapidly declining 10 

GFR (5). Accordingly, risk estimation equations have been developed and validated in patients 

with CKD in stage G3 to G5 to predict their risk of CKD progression. Thereby, the prediction 

of CKD progression is mainly based on GFR and albuminuria – a putative marker of glomerular 

injury (6, 7), a concept lingering in nephrology for several decades. 

 However, recent evidence suggests that a substantial proportion of CKD patients 15 

shows disease progression in the absence of proteinuria or albuminuria (8), so-called non-

proteinuric pathways of CKD progression. In patients with type 2 diabetes included in the third 

National Health and Nutrition Examination Survey (NAHNES III), in only 19 % of patients with 

an estimated GFR (eGFR) lower than 60 ml/min/1.73 m2 macroalbuminuria was present (9). 

Moreover, the annual decline of eGFR in type 2 diabetic patients was similar in subjects without 20 

albuminuria as compared to those with microalbuminuria (10). A longitudinal study, which 

followed patients with type 2 diabetes for 15 years, found that albuminuria started to increase 

when eGFR declined below 60 ml/min/1.73m2, which indicates that albumin loss might be 

rather a consequence than the cause of CKD in these patients (11). In the community-based 

ARIC cohort, 19 % of the participants with type 2 diabetes developed incident CKD, of whom 25 

58 % had normoalbuminuria (12). Importantly, large scale observations of US adults with 

diabetes from 1988 through 2014 document that the prevalence of CKD in diabetic patients 

significantly increased from 1988 to 2014, whereas the prevalence of albuminuria (i.e. albumin-
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creatinine-ratio, ACR ≥30 mg/g) significantly decreased in the same time (13). Notably, non-

proteinuric pathways of CKD progression are not restricted to patients with diabetes, but also 

of relevance for the progression of hypertensive, cystic and interstitial kidney diseases (14). 

These findings indicate that besides glomerular injury other compartments such as the tubulo-

interstitial compartment of the kidney might play a pivotal role in the progression of CKD. 5 

 Recently, we identified Dickkopf-3 (DKK3), a member of the evolutionary conserved 

Dickkopf protein family, which is involved in Wnt/β-catenin signaling (15), to be a key driver in 

tubulointerstitial injury and fibrosis (16). DKK3 is released from “stressed” tubular epithelial 

cells in the kidney and can be quantified in the urine (17). Measurement of DKK3 in the urine 

allows identification of CKD patients with short-term risk of GFR loss as well as patients at high 10 

risk for postoperative acute kidney injury (AKI) and its transition into CKD, independent of 

kidney function and proteinuria (18). 

 The aim of the present study was to explore the impact of the tubular stress marker 

DKK3 in comparison to proteinuria as a marker for glomerular injury for the identification of 

patients at risk for kidney dysfunction in a primarily non-CKD cohort. We quantified DKK3 and 15 

proteinuria at baseline in the large-scale, multicentre COSYCONET study of patients with 

stable chronic obstructive pulmonary disease (COPD) and explored their association with 

kidney and lung function during long-term follow-up. In addition, we explored the impact of 

DKK3 in wild-type and Dkk3-/- mice subjected to cigarette smoke (CS)-induced lung injury 

combined with a CKD model (CS-CKD model). 20 
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Methods 

Animal experiments 

Details on the animal experiments can be found in the Supplement. 

 

Study design, setting, and participants of the COSYCONET study population 5 

The COPD and SYstemic consequences-COmorbidities NETwork (COSYCONET) is a 

German multicentre, prospective observational trial, which recruited 2,741 patients aged ≥40 

years with diagnosis of COPD between 2010 and 2013 in 31 study centres. The study protocol 

has been previously described in detail (19). COPD was defined according to the spirometric 

Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria (20) as having a ratio 10 

FEV1/FVC <70 % determined in standardized post-bronchodilator spirometry. 2,314 patients 

with baseline urine samples available were included in the present analyses. Six, 18, 36, and 

54 months after enrolment, patients were invited to participate in follow-up visits, in which lung 

function testing was performed. All-cause mortality was assessed over a median follow-up 

period of 37.1 months. Three participants were lost to follow-up. COSYCONET was approved 15 

by the ethics committees at all participating sites and all participants provided written consent. 

The study is registered at clinicaltrials.gov (NCT01245933).  

 

Lung function and exercise capacity in COSYCONET 

Airway obstruction was quantified by determining the post-bronchodilator FEV1 at baseline as 20 

well as during follow-up visits. Moreover, exercise capacity was determined by the 

measurement of the 6-MWD. 

 

Laboratory measurements in COSYCONET 

Creatinine measurements were calibrated to the gold standard, an isotope dilution mass 25 

spectrometry. eGFR at baseline, after 6 months, and after 18 months was calculated using the 

CKD-EPI equation (21). DKK3 concentrations in urine were measured using a commercially 

available ELISA (DiaRen, Homburg, Germany) as described previously (17, 18). The inter-
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assay test variability was 4.7 % in the lower detection range and 5.1 % in the higher detection 

range. Any cross-reactivity with other Dickkopf proteins was excluded. Urinary DKK3 

concentrations were normalized to urinary creatinine concentrations to account for urine 

dilution. Urinary protein concentrations were determined using a Beckman Coulter AU480 

clinical chemistry analyzer. 5 

 

Statistics 

Continuous variables are presented as mean ± standard deviation (SD) when normally 

distributed or as median (interquartile range). Statistical differences between continuous or 

categorical variables were established using One-way ANOVA, Kruskall-Wallis test, or χ2 test 10 

where appropriate. In animal experiments, One-way ANOVA was followed by Dunnett’s test 

for pairwise comparisons. 

 To assess the association between baseline urinary DKK3 and changes of FEV1, 6-

MWD or eGFR, we performed group-based trajectory modelling of FEV1, 6-MWD or eGFR 

using the STATA package ‘traj’. This approach is based on the SAS PROC TRAJ macro (22), 15 

which fits a semiparametric (discrete mixture) model for longitudinal data using maximum 

likelihood methods. We used the Bayesian information criterion (BIC) to establish the optimal 

number of groups. Trajectory groups of FEV1 were termed: group A (increasing FEV1), group 

B (stable FEV1), and group C (declining FEV1). Trajectory groups of 6-MWD were termed: 

group A (increasing 6-MWD), group B (declining 6-MWD), and group C (rapidly declining 6-20 

MWD). Trajectory groups of eGFR were termed group A (increasing eGFR), group B (stable 

eGFR), and group C (declining eGFR). We then performed logistic regression analyses to 

determine the association between baseline urinary DKK3 and trajectory group C of FEV1, 6-

MWD, or eGFR using group B as reference. 

 Logistic regression analyses or Cox proportional hazard models were used to assess 25 

the association between baseline urinary DKK3 and risk of COPD exacerbation or mortality, 

respectively. To assess the association between baseline urinary DKK3 and 6-MWD, we used 

generalized linear models and calculated multivariate adjusted least square means of 6-MWD 
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according to categories of DKK3. Results from crude and multivariate adjusted models 

(adjusted for age, sex, GOLD stage, smoking status, body mass index, baseline kidney 

function, and proteinuria) are presented. 

 The non-linear association between baseline urinary DKK3 and changes of eGFR 

after 6 months as well as after 18 months was visualized using restricted cubic splines of 5 

urinary DKK3 with three knots placed at 2, 226, and 979 pg/mg creatinine, which corresponds 

to the 10th, 50th, and 90th percentile of urinary DKK3, respectively. Moreover, we used 

generalized linear models to estimated multivariate adjusted least square means of the change 

of eGFR during follow-up according to categories of urinary DKK3. DKK3 was categorized into 

two groups (≤200 pg/mg and >200 pg/mg creatinine) as described previously (17, 18) to 10 

improve the general readability of the manuscript. To exclude any bias derived from definition 

of DKK3 categories, we assessed the association between log-transformed urinary DKK3 and 

changes of eGFR in generalized linear models.  

 Furthermore, we used a machine learning approach to confirm the association 

between baseline urinary DKK3 and changes of eGFR as well as declining FEV1 as an 15 

unbiased approach. For this purpose, we used kernel-based least squares provided within the 

STATA package ‘krls’. We assessed the predictive value of urinary DKK3 for prediction of 

declining eGFR or FEV1 in comparison to a model including baseline age, sex, GOLD class, 

smoking status, body mass index, eGFR, and proteinuria by determining integrated 

discrimination improvement (IDI) and net reclassification improvement (NRI).  20 

 A two-sided P value of less than 0.05 was considered statistically significant. 

Statistical analyses were performed using SPSS version 21.0 and STATA IC 15 with the 

packages krls, nriidi, postrcspline, and traj.  

 

  25 
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Results 

Urinary DKK3 significantly improves identification of patients with progressive kidney 

dysfunction 

We determined baseline urinary DKK3, eGFR, and proteinuria in 2,314 subjects of the 

COSYCONET cohort (Figure 1). eGFR was quantified after six and 18 months of follow-up. 5 

The baseline characteristics are shown in Table 1. Mean eGFR at baseline was 82.0+16.4 

ml/min/1.73m2 and proteinuria 5.0 (6.0) mg/g creatinine. At first, we performed group-based 

trajectory modelling of eGFR (Figure 2A). While eGFR remained stable during follow-up in 

74.5 % of the participants, declining eGFR was observed in 16.5 %, in whom eGFR decreased 

by 20 % within 18 months of follow-up. Next, we assessed the association between baseline 10 

urinary DKK3, eGFR, and proteinuria and the risk of declining eGFR (i.e. trajectory group C, 

Figure 2B). Patients with elevated baseline urinary DKK3 (i.e. >200 pg/mg creatinine) had a 

significantly higher risk (OR: 1.55, 95% CI: 1.16-2.08, P=0.003) for declining eGFR during 

follow-up. Importantly, this association persisted even after adjusting for eGFR and proteinuria 

(Supplemental Table S1) and was independent of a specific DKK3 cut-off (Supplemental 15 

Table S2) and confirmed by using machine learning (Supplemental Table S3). In contrast to 

DKK3, we did not observe an association between baseline eGFR or proteinuria and changes 

of eGFR during follow-up (Figure 2B, Supplemental Tables S4-S9). Adding DKK3 to a clinical 

model comprising age, sex, GOLD grade, smoking status, and body mass index significantly 

improved prediction of the risk of declining eGFR (NRI 0.093, 95% CI 0.032-0.154, P=0.0031, 20 

IDI 0.005, 95% CI 0.002-0.008, P=0.0029). Contrarily, adding baseline eGFR or proteinuria to 

this model did not have a significant effect on reclassification (Figure 2B). Next, we assessed 

the association between DKK3 and declining eGFR in a subgroup of patients without any sign 

of apparent kidney dysfunction (i.e. patients with eGFR >90 ml/min/1.73m2 and proteinuria <30 

mg/g creatinine). Also, in this subgroup, higher baseline DKK3 was associated with a 25 

significantly higher risk for declining eGFR during follow-up (OR: 1.92, 95% CI 1.11-3.12, 

P=0.020). This indicates that DKK3 identifies patients at risk for loss of GFR in the absence of 

apparent CKD. 



 11 

 To corroborate these findings, we assessed the non-linear association between 

baseline urinary DKK3 and subsequent loss of eGFR during follow-up using restricted cubic 

spline plots (Figure 3A+B). Higher baseline urinary DKK3 was associated with a larger decline 

of eGFR after 6 or 18 months. While eGFR remained stable in patients with urinary DKK3 

concentrations ≤200 pg/mg creatinine, in patients with urinary DKK3 >200 pg/mg creatinine, 5 

eGFR loss was -0.8% (95% CI: -1.6-0.2 %, P<0.0001) after 6 months and -1.6% (95 % CI: -

2.6–-0.5, P=0.005) after 18 months (Supplemental Tables S11-12). This association was 

confirmed in models using DKK3 as continuous log-transformed variable as well as by a 

machine learning approach (Supplemental Tables S13-14). 

 10 

Urinary DKK3 identifies COPD patients with worsening FEV1  

In COSYCONET, FEV1 and 6-MWD as a measure of physical performance were determined 

at baseline as well as after six, 18, 36, and 54 months (Figure 1).  To assess the impact of 

kidney injury on the subsequent decline of FEV1, trajectories of FEV1 were built (Figure 4A). 

This approach identified three groups of COPD patients. While FEV1 remained stable over 15 

time in 58.1 % participants, FEV1 declined in 39.4 % subjects. In 2.5 % of the patients, FEV1 

improved temporarily. We found that higher baseline urinary DKK3 was associated with a 

significantly higher risk for declining FEV1 during follow-up (OR 3.36, 95% CI 2.22-5.08, 

P<0.001, Figure 4B, Supplemental Table S15). This association persisted after adjustment 

for several covariates including age, sex, GOLD class, smoking status, body mass index, 20 

baseline eGFR and proteinuria. DKK3 significantly improved risk prediction as compared to a 

clinical model comprising age, sex, GOLD grade, smoking status and body mass index (IDI 

P=0.0002, NRI P=0.003). Notably, there was no association between baseline eGFR or 

proteinuria and declining FEV1 (Figure 4B, Supplemental Table S16-17). The association 

between DKK3 and declining FEV1 was confirmed using machine learning (Supplemental 25 

Table S18).  

 

Association between kidney injury, COPD exacerbation, exercise capacity, and mortality 
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To determine the association between baseline urinary DKK3 and changes of the 6-MWD, as 

a measure of the exercise capacity, we built trajectories of the 6-MWD (Figure 4C). Hereby, 

we identified three groups of patients. In 90.3 % of the participants, 6-MWD declined during 

follow-up, whereas 9.0 % of the patients were characterized by rapidly declining 6-MWD. 

Baseline urinary DKK3 was independently associated with a higher risk for rapidly declining 6-5 

MWD during follow-up (OR 1.56, 95% CI 1.09-2.22, P=0.014, Fig. 4D, Supplemental Table 

S19). We observed no association between baseline proteinuria or eGFR and declining 6-

MWD (Supplemental Tables S20-21).  

 In line with these findings, higher baseline urinary DKK3 was associated with a higher 

risk of COPD exacerbation during follow-up (OR 1.24, 95% CI 1.03-1.50, P=0.026, 10 

Supplemental Table S22). During a median follow-up of 37.1 months (IQR 33.4 months), 191 

participants of COSYCONET died. Higher baseline urinary DKK3 was associated with a higher 

risk of death during follow-up (HR 1.49, 95% CI 1.08-2.05, P=0.015, Fig. 5, Table S8). These 

findings demonstrate that subclinical kidney injury (i.e. not detectable by a decrease in GFR 

or proteinuria), as quantified by the measurement of urinary DKK3, is significantly associated 15 

with subsequent worsening pulmonary function and increased mortality in patients with COPD.  

 

Kidney dysfunction aggravates lung injury in a combined organ injury mouse model 

To corroborate these clinical findings, we combined established murine models of cigarette 

smoke (CS)-induced lung injury and adenine diet-induced CKD (CS-CKD model, Figure 6A). 20 

After three weeks of treatment, bronchoalveolar lavage fluid (BALF) was collected. Whereas 

CKD without CS had no effect on BALF cell composition, mice treated with CS had significantly 

higher total cell count, neutrophils, and lymphocytes (Figure 6B-D). Interestingly, in CS-CKD 

mice, total BALF cell numbers, neutrophils, and lymphocytes were significantly higher as 

compared to mice treated with CS alone. Induction of CKD alone induced accumulation of 25 

Ly6B-positive neutrophils and monocytes (Supplemental Figure 1A) in lung tissue and 

enhanced CS-induced lung infiltration with neutrophils/monocytes (Ly6B) and T-lymphocytes 

(CD3, Supplemental Figure 1A-B). In BALF, CS increased concentrations of several pro-
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inflammatory cytokines, while no secreted pro-inflammatory cytokines were detected in BALF 

of CKD mice (Supplemental Figure 1C and Table S24). Notably, kidney injury induced by the 

administration of an adenine diet significantly enhanced the concentrations of pro-

inflammatory cytokines in BALF of CS-exposed mice as compared to mice treated with CS 

alone. CS per se did not affect creatinine or urea serum levels in mice with or without adenine 5 

diet (Supplemental Figure 1D-E). However, CS significantly enhanced kidney fibrosis in CS-

CKD mice (Figure 6E-F). Moreover, we found that CS alone promoted accumulation of Ly6G-

positive neutrophils within the kidney and further aggravated inflammation caused by CKD 

(Supplemental Figures 1F-G). 

 10 

DKK3 mediates CS-induced lung and kidney injury 

To assess the role of DKK3 in the CS-CKD mouse model, we determined the DKK3 expression 

in the kidney (Figure 7A-B). CS per se induced renal tissue DKK3 expression in animals not 

on adenine diet, whereas no DKK3 was detectable in kidneys from mice subjected to standard 

diet in the absence of CS. DKK3 expression in CS-treated mice was restricted to the apical 15 

area of the tubuli. Adenine diet promoted strong and widespread tubular DKK3 expression, 

which was further enhanced in the combined CS-CKD model. Here, DKK3 expression was not 

only apparent in the tubular epithelium but also in the interstitial compartment. Abrogation of 

Dkk3 significantly reduced lung inflammation (Figure 7C-E) as determined by lower total cell 

count, neutrophil and lymphocyte count in BALF of CS-CKD mice. Moreover, the 20 

concentrations of MIP-2, G-CSF, MMP12, and TNFα in the BALF was significantly lower in 

Dkk3-/- mice as compared to wildtype mice (Figure 7F-J). In the kidneys, Dkk3 deficiency 

significantly reduced fibrosis as well as serum creatinine and urea levels (Figure 7K-N). 

 

  25 
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Discussion 

Here, we identified urinary DKK3 as a marker of tubular stress and tubulointerstitial injury, 

which allows identification of patients at risk for progressive kidney dysfunction in a cohort of 

primarily non-CKD patients with COPD. Higher urinary DKK3 was not only associated with 

declining GFR, but also adverse pulmonary events pointing to a link between both organ 5 

systems. Notably, neither baseline eGFR nor proteinuria were associated with any of these 

events. The pathophysiological role of DKK3 was underscored in animal experiments, in which 

genetic abrogation of DKK3 attenuated both kidney fibrosis and pulmonary inflammation. 

 We have recently shown that DKK3 is released from tubular epithelial cells into the 

urine in a variety of kidney injury models and plays a pivotal role in the development of 10 

tubulointerstitial fibrosis (16). Indeed, the tubulointerstitial compartment represents a key 

player in mediating progressive CKD. The tubular epithelium is highly sensitive to hypoxia, 

metabolic disturbances, and toxic substances. These conditions initiate a “tubulo-toxic” 

cascade leading to oxidative stress, cell cycle arrest, pro-inflammatory cell activation, and the 

expression of profibrotic factors such as transforming growth factor-β1 (TGF-β1). This 15 

promotes the generation of myofibroblasts and the deposition of extracellular matrix 

culminating in irreversible tubulointerstitial fibrosis (23). In our animal models, we found that 

exposure of mice to CS is sufficient to induce the expression of DKK3 in tubular epithelial cells. 

While DKK3 is only located in the apical membrane of tubular epithelial cells in CS-treated 

mice, in adenine-fed mice widespread tubular DKK3 expression could have been observed. In 20 

line with our previous studies, there was virtually no DKK3 expression in mice fed with a 

standard diet exposed to normal air (16, 17). This indicates that DKK3 is only expressed in 

stressed tubular cells undergoing various types of insults. Therefore, it is plausible that DKK3 

released from tubular cells to the surrounding tissue activates fibrogenesis by the regulation 

of Wnt/β-catenin-dependent signalling pathway (23).  25 

 DKK3 belongs to the Dickkopf protein family, which plays an important role in the 

regulation of Wnt/β-catenin signalling pathway (15). Wnt/β-catenin can be activated in variety 

of cells such as tubular epithelial cells, fibroblasts, and macrophages in the kidney. Wnt 



 15 

agonists induce translocation of β-catenin into the nucleus, where it interacts with the 

transcription factors T cell factor (TCF) and lymphoid enhancer factor (LEF) to drive the 

expression of a variety of Wnt target genes (24). Thereof, TGF-β (25), SNAIL (26), matrix 

metalloproteinases (MMP) (27), and plasminogen activator inhibitor 1 (PAI1) (28) are directly 

involved in the development of kidney fibrosis. Interestingly, we found that genetic abrogation 5 

of DKK3 in the combined CS-CKD mouse model significantly reduced the expression of MMP-

12 in BALF suggesting that DKK3 might directly regulate the expression of proteases involved 

in adverse pro-fibrotic remodelling.  

 The present study has broad clinical relevance. In a well-characterized large-scale 

non-CKD cohort of patients with COPD, DKK3 but not proteinuria or baseline GFR identified 10 

patients with progressively declining kidney function. The cohort mainly comprised patients 

without apparent CKD, since baseline eGFR was 82.0±16.4 mL/min/1.73m2 and proteinuria 

5.0 (6.0) mg/g creatinine. Nevertheless, in the modelling of eGFR trajectories, we identified a 

group of patients (i.e. 16.5 %), in whom eGFR declined by 20 % within 18 months. Our findings 

indicate that urinary DKK3 has the potential to recognize patients with ongoing tubular stress 15 

at high risk for deteriorating kidney function, who could not have been detected by currently 

available methods such as estimation of GFR or proteinuria. Accordingly, baseline urinary 

DKK3 but not proteinuria or eGFR significantly improved reclassification of patients. These 

findings are in line with our previous studies, in which urinary DKK3 was associated with short-

term risk of eGFR loss in patients with established CKD and the risk of AKI-CKD transition in 20 

patients undergoing cardiac surgery (17, 18). The data suggest that DKK3 can be used in a 

variety of clinical settings to uncover inapparent progressive kidney injury. 

 Beyond that, the present study highlights an important interaction between the kidney 

and the lung. Epidemiological studies revealed an association between impaired kidney 

function and higher mortality as well as increased exacerbation risk in patients with COPD (29, 25 

30). Measurement of urinary DKK3 does not only allow identification of COPD patients with 

declining eGFR, but also those with decreasing FEV1, physical performance, higher 

exacerbation risk, and all-cause mortality. Also here, neither baseline eGFR nor proteinuria 
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were associated with these important clinical events. In our animal models, we found that lung 

inflammation was significantly attenuated in Dkk3-/- mice. These findings suggest that DKK3 

as a regulator of the Wnt/β-catenin system is not only relevant for ongoing kidney injury, but 

also for adverse pulmonary remodelling induced by CS. Indeed, it has been recently shown 

that the Wnt/β-catenin cascade plays a pivotal role in experimental CS-induced COPD (31). 5 

Thereby, DKK3 could serve as a mediator of reciprocal organ injury and fibrosis. 

 These findings are not only relevant for risk stratification, but also have important 

therapeutic implications. In particular, patients with elevated urinary DKK3 might benefit from 

preventive therapeutic strategies such as intensified monitoring of kidney function, optimization 

of the hydration status, avoidance of nephrotoxic agents, and interdisciplinary patient care. 10 

Moreover, it has to be evaluated on whether these patients particularly benefit from early 

therapeutic interventions such as the inhibition of the sodium-glucose transporter 2 (SGLT2) 

or endothelin-1 receptor antagonism, which reduce kidney tissue fibrosis in variety of small 

animal models (32-35).  

 The study is not without limitations. COSYCONET comprises patients of European 15 

ancestry, therefore the generalization of the present findings to other ethnicities has to be 

determined. We have used recently published cut-offs of urinary DKK3 for the present 

analyses to improve general readability (17, 18). However, analyses were validated in models 

including log-transformed DKK3 as a continuous variable and using machine learning methods 

as an unbiased approach. 20 

 In summary, the present study highlights urinary DKK3 as a marker for the early 

identification of patients at risk for progressive kidney dysfunction in a non-CKD population 

with preserved GFR and without significant proteinuria. In patients with COPD, urinary DKK3 

was not only associated with declining eGFR, but also deteriorating pulmonary function as well 

as adverse outcomes. Therefore, DKK3 expands the diagnostic spectrum in the field of 25 

nephrology and paves the way for early preventive therapeutic strategies. 
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Figure legends 

Figure 1. Outline of the COSYCONET clinical study. 

(A) Outline of the COSYCONET trial. 

 

Figure 2. Urinary DKK3 identifies patients with declining estimated glomerular filtration 5 

rate (eGFR). 

(A) Group-based trajectory modelling of eGFR identified three distinct eGFR trajectories 

corresponding to patients with increasing eGFR (group A), stable eGFR (group B), and 

declining eGFR (group C). Shaded areas indicate 95% CIs. (B) Association between urinary 

DKK3, eGFR, and proteinuria at baseline and eGFR trajectory group C (reference: group B, 10 

stable eGFR). Shown are the OR and 95% CI. Analyses were adjusted for age, sex, GOLD 

grade, smoking status, body mass index, eGFR, and proteinuria, where applicable. NRI, net 

reclassification improvement. IDI, integrated discrimination improvement. (C) Association 

between baseline urinary DKK3 and eGFR trajectory group C in patients with eGFR <90 

ml/min/1.73m2 and/or proteinuria ≥30 mg/g creatinine and patients with eGFR >90 15 

ml/min/1.73m2 and proteinuria <30 mg/g creatinine. 

 

Figure 3. Baseline urinary DKK3 associates with changes of estimated glomerular filtration 

rate (eGFR) during followup. 

(A) and (B) Restricted cubic spline plots of the association between baseline urinary DKK3 20 

concentrations and eGFR after 6 or 18 months of follow-up, respectively. The red line indicates 

the estimated change of eGFR with respective 95% CIs (light grey area). All plots are adjusted 

for age, sex, GOLD class, smoking status, body mass index, baseline eGFR and proteinuria. 

Blue spikes show the individual distribution of urinary DKK3 concentrations.  

 25 

Figure 4. Urinary DKK3 identifies patients with worsening pulmonary function and 

physical performance. 
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(A) Group-based trajectory modelling of forced expiratory volume in one second (FEV1) 

identified three distinct FEV1 trajectories corresponding to patients with increasing FEV1 (group 

A), stable FEV1 (group B), and declining FEV1 (group C). Shaded areas indicate 95% 

confidence intervals (CI). (B) Association between urinary DKK3 concentrations dichotomised 

at 200 pg/mg creatinine, eGFR, and proteinuria at baseline and FEV1 trajectory group 5 

(reference: group B, stable FEV1). Results are adjusted for age, sex, GOLD class, smoking 

status, body mass index, baseline eGFR and proteinuria, where appropriate. (C) Group-based 

trajectory modelling of six-minute walking distance (6-MWD) identified three distinct 6-MWD 

trajectories corresponding to patients with increasing 6-MWD (group A), declining 6-MWD 

(group B), and rapidly declining 6-MWD (group C). Shaded areas indicate 95% confidence 10 

intervals (CI). (D) Association between urinary DKK3 concentrations dichotomised at 200 

pg/mg creatinine, eGFR, and proteinuria at baseline and 6-MWD trajectory group (reference: 

group B, declining 6-MWD). Results are adjusted for age, sex, GOLD class, smoking status, 

body mass index, baseline eGFR and proteinuria, where appropriate.  

 15 

Figure 5. Urinary DKK3 is associated with higher mortality. 

Survival plot for the association between baseline urinary DKK3 concentrations (dichotomised 

at 200 pg/mg creatinine) and all-cause mortality in 2,311 participants of the COSYCONET 

cohort. Results are adjusted for age, sex, GOLD class, smoking status, body mass index, 

baseline eGFR and proteinuria.  20 

 

Figure 6. Characterization of a murine CS-CKD model. 

(A) Outline of the experimental studies. (B-D) Quantification of total cells, neutrophils, and 

lymphocytes in the bronchoalveolar lavage fluid (BALF) after three weeks in the combined CS-

CKD model. (E) Quantification of kidney fibrosis and (F) representative histological images of 25 

Sirius-Red stained kidney samples. Each dot refers to an individual animal. 

 

Figure 7. DKK3 promotes lung inflammation and kidney fibrosis 
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(A-B) Quantification of kidney tissue DKK3 expression and representative 

immunofluorescence images. G indicated glomeruli (C-E) Quantification of total cells, 

neutrophils, and lymphocytes in the bronchoalveolar lavage fluid (BALF) after three weeks in 

the combined CS-CKD model in wildtype (WT) and Dkk3-/- mice. (F-J) Quantification of 

different cytokine in the BALF of wildtype and Dkk3-/- mice after three weeks in the combined 5 

CS-CKD model. (K) Quantification of kidney tissue fibrosis and (L) representative histological 

images of Sirius-Red stained kidney samples after three weeks in the combined CS-CKD 

model. (M-N) Serum creatinine and urea concentrations. Each dot refers to an individual 

animal. MIP-2 = Macrophage Inflammatory Protein 2, MMP-12 = matrixmetalloproteinase-12, 

IL-12 = interleukin-12, G-CSF = Granulocyte-Colony Stimulating Factor, TNF-α = tumour 10 

necrosis factor-α. 

 

 



Table 1: Baseline characteristics of participants of the COSYCONET cohort divided into 
categories according to urinary DKK3 
 
 Total cohort 

 
(N=2,314) 

Urinary DKK3 
≤200 pg/mg 
creatinine 
(N=1,048) 

Urinary DKK3 
>200 pg/mg 
creatinine 
(N=1,266) 

P Value 

Age (years) 65.0±8.6 64.2±8.5 65.3±8.7 0.001 
Sex (% male) 59.1 60.2 58.2 0.328 
Body mass index 
(kg/m2) 

27.1±5.4 27.5±5.4 26.8±5.4 0.001 

GOLD Grade 0 (%) 15.0 16.3 13.9 0.047 
GOLD Grade 1 (%) 10.4 10.7 10.1 
GOLD Grade 2 (%) 37.8 36.8 38.7 
GOLD Grade 3 (%) 29.6 27.7 31.1 
GOLD Grade 4 (%) 7.2 8.4 6.1 
FEV1 (% predicted) 55.0 (30.0) 55.0 (32.0) 55.0 (29.0) 0.469 
TLCO (% predicted) 53.7 (29.7) 55.2 (29.1) 53.5 (29.5) 0.235 
Smoking (%) 92.4 92.6 92.2 0.915 
Packyears (-) 42.0 (42.5) 43.0 (41.5) 42.5 (44.3) 0.824 
Serum Creatinine 
(mg/dL) 

0.9±0.2 0.9±0.2 0.9±0.2 0.991 

eGFR 
(mL/min/1.73m2) 

82.0±16.4 82.5±16.0 81.3±16.7 0.119 

Urinary DKK3 
(pg/mg creatinine) 

227 (414) 77 (119) 467 (493) <0.001 

Proteinuria (mg/g 
creatinine) 

5.0 (6.0) 4.0 (4.0) 5.0 (7.0) <0.001 

TLCO = Transfer factor of the lung for carbon monoxide. Data are presented as mean ± SD 
for parametric data, median (interquartile range) for nonparametric data, and n (%) for 5 
categorical data. 
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