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Aims Inflammation plays an important role in cardiovascular disease (CVD) development. The NOD-like receptor
protein-3 (NLRP3) inflammasome contributes to the development of atherosclerosis in animal models.
Components of the NLRP3 inflammasome pathway such as interleukin-1f can therapeutically be targeted.
Associations of genetically determined infllmmasome-mediated systemic inflammation with CVD and mortality in
humans are unknown.

Methods We explored the association of genetic NLRP3 variants with prevalent CVD and cardiovascular mortality in
538 167 subjects on the individual participant level in an explorative gene-centric approach without performing
multiple testing. Functional relevance of single-nucleotide polymorphisms on NLRP3 infllmmasome activation has
been evaluated in monocyte-enriched peripheral blood mononuclear cells (PBMCs).

Results Genetic analyses identified the highly prevalent (MAF 39.9%) intronic NLRP3 variant rs10754555 to affect NLRP3
gene expression. rs10754555 carriers showed significantly higher C-reactive protein and serum amyloid A plasma
levels. Carriers of the G allele showed higher NLRP3 inflammasome activation in isolated human PBMCs. In carriers
of the rs10754555 variant, the prevalence of coronary artery disease was significantly higher as compared to non-
carriers with a significant interaction between rs10754555 and age. Importantly, rs10754555 carriers had signifi-
cantly higher risk for cardiovascular mortality during follow-up. Inflammasome inducers (e.g. urate, triglycerides,

apolipoprotein C3) modulated the association between rs10754555 and mortality.

Conclusion The NLRP3 intronic variant rs10754555 is associated with increased systemic inflammation, inflammasome activa-
tion, prevalent coronary artery disease, and mortality. This study provides evidence for a substantial role of genetic-
ally driven systemic inflammation in CVD and highlights the NLRP3 inflammasome as a therapeutic target.
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Graphical Abstract

Keywords

Introduction

Vascular inflammation is important in the initiation and progression
of atherosclerotic vascular diseases.” Inflammatory markers such as
high-sensitivity C-reactive protein (hsCRP) and serum amyloid A
(SAA\) are associated with increased mortality in patients with mani-
fest cardiovascular disease (CVD)? and healthy subjects with elevated
inflammatory markers are at increased risk for the development of
CVD.** Inflammation in patients with CVD is characterized by the
activation of monocytes, which adhere to the endothelium and mi-
grate into the sub-endothelial layer, where they are activated by en-
dogenous mediators such as modified lipoproteins triggering an
innate immune response.’ These monocytes differentiate into tissue
macrophages, acquire lipids and lipoproteins, and transform into
foam cells contributing to atherosclerotic plaque formation.®’
Interleukin (IL)-1P represents one of the key cytokines released by
activated monocytes and macrophages leading to vascular (micro)in-
flammation.” The processing of pro-IL-1B into mature IL-1 is tightly
regulated by a multimeric intracellular protein complex, the NOD-
like receptor protein 3 (NLRP3) inflammasome.? In addition to ex-
ogenous triggers, the NLRP3 inflammasome is activated by a variety
of endogenous mediators such as urate, cholesterol crystals, and oxi-
dized low-density lipoprotein.” Moreover, we recently observed that
lipoproteins such as the triglyceride-associated apolipoprotein C3
(ApoC3) directly mediate alternative NLRP3 activation in human
monocytes leading to vascular injury in vivo."® The CANTOS trial
demonstrated that inhibition of IL-1f, the effector cytokine of the

@ @ g Fern
@
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NLRP3 inflammasome, with the monoclonal antibody canakinumab
reduced recurrent cardiovascular (CV) events in patients with previ-
ous myocardial infarction (Ml) and elevated hsCRP >2mg/L on the
top of maximally tolerated statin therapy.'" Recently, the COLCOT
trial reported that colchicine, an anti-inflammatory agent for the
treatment of conditions such as gout, reduced a composite CV end-
point after Ml by 23%." Importantly, modulating NLRP3 inflamma-
some activity represents one mechanism by which colchicine
reduces inflammation.'?

Despite growing experimental evidence for the NLRP3 inflamma-
some being a key driver of CVD and increased understanding of its
molecular regulation, the clinical relevance of inflammasome activa-
tion in patients at risk for or with prevalent CVD is incompletely
understood. In the present study, we assessed the association of a
gene variant affecting NLRP3 gene expression and function with the
prevalence of coronary artery disease (CAD) and CV mortality in
538 167 subjects.

Methods

Detailed description of the methods can be found in the Supplementary
material online.

Genetic association validation studies

The association between single-nucleotide polymorphisms (SNPs) and
all-cause as well as CV mortality was studied by genotype or in an additive
genetic model. Since the current study is a gene-centric and not a
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genome-wide association study (GWAS), it did not require genome-wide
significance. Due to the explorative nature of the study, we did not ac-
count for the issue of multiple testing and thus report unadjusted P-val-
ues. Findings were validated in participants of 10 studies comprising
526 091 participants. Study details are described in the Supplementary
material online.

Statistical analyses

Continuous variables are presented as mean + standard deviation or
mean £ 95% confidence intervals (Cls) for normally distributed variables,
or as median and interquartile range for variables with skewed distribu-
tions. Categorical variables are presented as frequencies. Differences be-
tween continuous variables were assessed using one-way ANOVA or
Kruskal-Wallis test where appropriate. Differences between categorical
variables were determined using the x* test. Generalized linear models
were used to estimate age- and sex-adjusted marginal means of hsCRP or
SAA according to rs10754555 SNP carrier status. In LURIC and
GerMIFS, the association between rs10754555 genotype, CAD and se-
vere CAD (only in LURIC) as well as mortality was assessed by logistic
and Cox regression analyses. Severe CAD was defined as angiographically
visualized >50% stenosis. To study the effect of age, an interaction term
between rs10754555 and age was added to the respective models.
Moreover, patients were divided into two groups at the age of 60 years
corresponding to the first tertile of age in LURIC. Univariate and multi-
variable analyses were performed with adjustment for age, sex, diabetes
mellitus, systolic blood pressure, body mass index, smoking status, esti-
mated glomerular filtration rate, low-density lipoprotein cholesterol,
hsCRP, presence of CAD, and previous Ml. In the experimental studies,
one-way ANOVA followed by Dunnett’s post hoc tests were used to as-
sess significant differences across rs10754555 genotype. Genotype distri-
butions were tested for Hardy—Weinberg equilibrium using exact tests
(https://ihghelmholtz-muenchen.de/cgi-bin/hw/hwa1.pl). Meta-analysis on
the association between rs10754555 SNP carrier status and CV mortality
was performed by using hazard ratios (HRs) and standard errors derived
from multivariable adjusted Cox regression models at individual partici-
pant level provided by each study. Standard normal random-effects
weighted meta-analysis was performed using the STATA package ‘metan’.
Between-study heterogeneity [* was determined as described previous-
ly."® Small-study effects were excluded by using the Egger test provided
within the STATA package ‘metabias’. To study the effect of ApoC3, tri-
glycerides, and urate, an interaction term with rs10754555 was intro-
duced in the respective models. ApoC3, triglycerides, and urate were
divided into two categories (Quartiles 1-3 vs. Quartile 4). All other analy-
ses were performed using SPSS version 25 and R version 3.3.3. The signifi-
cance level was set at 0.05.

Results

NLRP3 genetic variants

We used GWAS data from the LURIC study comprising 3061
patients referred for coronary angiography as cohort for SNP pre-
selection. Prioritization of an SNP with effects on the expression of
NLRP3 is shown in Figure 1A and identified rs10754555 as significant
eQTL in the ‘Blood eQTL browser’ (P=2.32 x 10°®) and the ‘GTEX
database’ (P=9.80 x 10°"°, Supplementary material online, Tables S1
and S2). To validate rs10754555 as an eQTL of NLRP3, the associ-
ation between rs10754555 and NLRP3 mRNA expression in whole
blood and peripheral blood mononuclear cells (PBMCs) was
assessed in 36 cohorts comprising 31 556 samples included in the

eQTLGen consortium™ (Figure 1B). In these analyses, rs10754555
qualified as a significant eQTL of NLRP3 (Z-score: 11.03, false discov-
ery rate <0.05, P=2.73 x 102®). The allele and genotype frequencies
of rs10754555 are consistent with Hardy—Weinberg equilibrium as
shown in Supplementary material online, Table S3. Data from the
Roadmap Epigenomics project indicate that rs10754555 maps with
promoter and enhancer histone marks and DNase hypersensitivity
(Supplementary material online, Figure S1). Importantly, heterozygous
and homozygous rs10754555 carriers showed significantly higher lev-
els of hsCRP (Figure 1C) and SAA (Figure 1D) as compared to non-
carriers indicating that this variant is associated with a systemic pro-

inflammatory state.

Biological relevance of rs10754555

The biological relevance of the rs10754555 variant was tested in
monocyte-enriched PBMCs (Figure 2A, Supplementary material on-
line, Table S4, and Supplementary material online, Figure S2A), which
revealed higher NLRP3 mRNA expression in heterozygous and
homozygous carriers of the G allele as compared to PBMCs from
non-carriers (Figure 2B). Importantly, the plasma levels of IL-18 and
IL-1p as NLRP3-dependent cytokines were also significantly higher in
G allele carriers (Figure 2C and D). To directly assess NLRP3 inflam-
masome activation according to the rs10754555 variant carrier sta-
tus, we quantified ASC specks in plasma. Notably, the rs10754555 G
allele was associated with plasma ASC specks (Figure 2E-G). These
findings confirm that carriers of the rs10754555 NLRP3 G allele are
characterized by greater inflammasome activation.

To corroborate these results, activation of the NLRP3 inflamma-
some was modelled by stimulating the isolated PBMCs with known
inflammasome activators [i.e. lipopolysaccharide (LPS), ATP, and
nigericin] and measuring the release of IL-1P into the cell culture
supernatant. Upon stimulation with LPS, LPS + ATP, and LPS +
nigericin, PBMCs from heterozygous and homozygous NLRP3
rs10754555 G allele carriers released significantly more IL-1 com-
pared to cells from non-carriers (Figure 3A-C). Unstimulated mono-
cytes did not release detectable concentrations of IL-1B. To
determine the specificity of these findings, release of IL-6 and tumour
necrosis factor (TNF) into cell culture supernatants was quantified
(Supplementary material online, Figure S2B—G), which did not differ
according to rs10754555 variant carrier status. To prove the rele-
vance of rs10754555 in vivo, we transplanted NOD-SCID mice with
human PBMCs from non-carriers and homozygous rs10754555 car-
riers and subjected them to perivascular carotid injury, a mouse
model for re-endothelialization, which we have recently shown to be
NLRP3 dependent'® (Figure 3D and E). Re-endothelialization was sig-
nificantly impaired in humanized mice receiving PBMCs from homo-
zygous rs10754555 carriers, in which NLRP3 protein expression was
higher as compared to non-carriers (Figure 3F).

Association between rs10754555 and the

risk of coronary artery disease

Supplementary material online, Tables S5 and $6 summarize the base-
line characteristics of participants of the LURIC study population sep-
arated by rs10754555 genotype as well divided at age of 60 years.
Minor allele frequency (G) for rs10754555 was 39.9%. The preva-
lence of traditional CV risk factors such as age, sex, body mass index,


https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab107#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab107#supplementary-data
https://ihg.helmholtz-muenchen.de/cgi-bin/hw/hwa1.pl
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab107#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab107#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab107#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab107#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab107#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab107#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab107#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab107#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab107#supplementary-data

J_ID: Customer A_ID: EHAB107 Copyedited by: Manuscript Category: Translational Research Cadmus Art: OP-EH

NOT FOR

PUBLIC RELEA¢

Genetically determined NLRP3 inflammasome 5

(a) (c) P=0.002

NLRP3 SNP _ 89 p=o.
identification N=112 P,ﬂ;l {

with MAF >0.05

Y

SNP scoring N=1

Y
Experimental N=1 0 — T |
validation C/C C/G G/G
rs10754555 genotype

L] 6-
Selection of SNPs N=52 E i

hsCRP (mg/L)
T

(b) CODAM-

GoNL_WGS -

LL A

LLS_660Q -

LLS_OmniExpr-

NTR_AFFY A

NTR_GoNL -

EGCUT_RNAseq -

PAN -

Rotterdam_RNASeq-

CARTaGENE_freeze1

CARTaGENE_freeze2 -

DGN A

GTEXx 1

BEST -

BSGS -

Cardiology-

CHDWB A

DILGOM A

EGCUT_HT12v3 A

EGCUT_HT12v4

Fehrmann_H8v2 A

Fehrmann_HT12v3

HVH_HT12v3 -

HVH_HT12v4

INCHIANTI

KORA _F4 -

LIFE_Adult_plus-

LIFE_Heart_plus-

Moroccor

Rotterdam_HT12v4+

SHIP_TREND -

SIGN 4

SorbsA

YoungFinns-

FHS -

NTR_NESDA -
Meta-analysis

rs10754555 P=0.035
NLRP3 (d e

P i 207 p=0.426
N=31,556
36 cohorts 15—

ol §1

~

SAA (mg/dL)

0 | T T

C/C C/G G/G
rs10754555 genotype

-5 0
Z-score

= 50 = 100 = 250 = 500 = 1000 m 5000 W 10000

Figure | |dentification of single-nucleotide polymorphisms regulating NLRP3 expression. (A) Variant prioritization approach. (B) Expression quanti-
tative trait locus meta-analysis for rs10754555 in whole blood or peripheral blood mononuclear cells in the eQTLGen consortium comprising
31 556 samples from 36 cohorts. (C) Age and sex-adjusted least square means of high-sensitivity C-reactive protein and (D) serum amyloid A in 3061
participants of the LURIC study (mean + 95% confidence interval).



J_ID:  Customer A_ID: EHAB107 Copyedited by: Manuscript Category: Translational Research Cadmus Art: OP-EH

NOT FOR

PUBLIC RELEAS

6 SJ. Schunk et dl.

(a) _PBMC Enrichment of
isolation monocytes + ATP (1 hr) ELISA

Adherence _+LPS , = Nigericin (1 hr) |y 4

ET e IL-6

@ © @ © @
@ N=104

Whole blood/plasma

Genotyping qPCR
rs10754555 NLRP3, HPRT1
ASC specks ~
IL-1, IL-18 N=130
N=348
(b) (€) P<0.0001 (d)
P<0.0001 — —P<0.0001_
— P<0.0001
4 P=0.0003 20004 1.6 FP<0.0001
<= | — L4 %) ° [}
Z5 ° 5
T g ° g 1.2
€2 34 : 3 1500 e 2 . o
-9 T ° o ;’_’T
=a ° )
£3 2 ° 5€ 10004 o g o EE 0.5 °
Io o ’ oD ' c D ) °
52 S . o= o e . o
=] )
T3 14 _ 2 500 - 0.4 o | o
L % ‘ = =
o 0 0.0-
c/C C/IG G/G C/C C/IG G/G C/IC C/IG G/G
(e)
(f) P<0.0001 (9)
1 4 Isot
25000~ P=0.0033 10°3 conrel
1
= 300' asma
g 20000 g ? 103+ i ZISC—HTC
O 15000 o | o A3C+
(7] © ° < 102
< ° } v 10
g 10000 $ A o
2 % ‘ &Ll °
o 5000 10'4
0
C/C C/G G/G 10° S e
10000 g e 100 10° 10" 102 10° 10

Figure 2 Functional effects of rs10754555 on expression of NLRP3 and inflammasome activation in freshly isolated human peripheral blood mono-

nuclear cells. (A) Experimental work-flow. (B) mRNA expression of NLRP3 in freshly isolated peripheral blood mononuclear cells. (C) Plasma levels of

interleukin-18 and (D) and interleukin-1f according to rs10754555 genotype. (E) Representative fluorescence microscopy of Alexa Fluor-488-

labeled ASC specks from plasma and GFP-ASC in the supernatant of THP-1 cells (representative of three independent experiments). (F) Mean fluor-

escence intensity of ASC specks in plasma samples according to rs10754555 genotype. (G) Representative flow cytometry images of ASC speck

quantification in plasma. Each dot represents an individual patient, and whiskers of the box plots represent 5 and 95 percentiles. LPS, lipopolysacchar-
AQI9] ide; qPCR, quantitative polymerase chain reaction; TNF, tumour necrosis factor.
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Figure 3 Modulation of NLRP3 inflammasome response by rs10754555 in freshly isolated human peripheral blood mononuclear cells and human-
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blood mononuclear cells from nine individual donors. Mean + 95% confidence interval.

smoking, hypertension, and lipid parameters did not differ between
non-carriers and carriers of the rs10754555 NLRP3 G allele.
Moreover, there was no significant difference in the medication
across different rs10754555 genotypes (Supplementary material on-
line, Table S7). Since there was a trend towards lower prevalence of
hypertension and diabetes in homozygous rs10754555 carriers in

LURIC, we assessed the association between rs10754555, blood
pressure, and presence of hypertension in UKBiobank, which did not
differ significantly between the groups (Supplementary material on-
line, Table S8), whereas the prevalence of diabetes was higher in
rs10754555 G allele carriers. In homozygous rs10754555 G allele
carriers, the risk for CAD and severe CAD was significantly higher as


https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab107#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab107#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab107#supplementary-data
https://academic.oup.com/eurheartj/article-lookup/doi/10.1093/eurheartj/ehab107#supplementary-data

J_ID:  Customer A_ID: EHAB107 Copyedited by: Manuscript Category: Translational Research Cadmus Art: OP-EH

NOT FOR

PUBLIC RELEAS

SJ. Schunk et al.

compared to non-carriers (Figure 4A and Supplementary material on-
line, Table S9). This association was present in participants below
60years of age [odds ratio (OR) for prevalent CAD: 2.04, 95% ClI
1.15-3.61; OR for severe CAD: 2.28, 95% Cl 1.29—4.01], but not in
those above 60years (OR for prevalent CAD: 0.83, 95% CI 0.55—
1.25; OR for severe CAD: 0.73, 95% Cl 0.49-1.03) revealing an age-
dependent association of rs10754555 with the development of ath-
erosclerotic CVD. We confirmed these findings in the GerMIFS stud-
ies [-VII with individual patient data available. Importantly, also in
GerMIFS, rs10754555 was associated with a higher risk for CAD in
subjects aged below 60years (OR 1.12, 95% CI 1.02-1.22, Figure 4B
and Supplementary material online, Table S10).

Association between rs10754555 and CV
mortality

In LURIC, all-cause mortality and CV mortality were significantly
higher in heterozygous (HR 1.26,95% CI 1.08-1.45 and 1.22, 95% ClI
1.01-1.47) and homozygous (HR 1.31, 95% Cl 1.08-1.59 and 1.35,
95% Cl 1.07-1.72) rs10754555 variant carriers (Supplementary ma-
terial online, Table S77). There was no association between
rs10754555 and other clinical endpoints such as fatal cancer or fatal
infection (Supplementary material online, Table $12). Interestingly,
the percentage of rs10754555 G allele carriers decreased with
increasing age (Supplementary material online, Table S$13).
Supplementary material online, Figure S3 compares the effect of the
rs10754555 genotype with other CV risk factors. Furthermore, we
assessed the association between rs10754555 genotypes and CV
mortality in 10 prospective clinical trials enrolling 526 091 subjects
with or without pre-existing CAD. Baseline characteristics for each
individual study are shown in Supplementary material online, Tables
$14-S522. Analyses were performed at an individual participant level.
Additive genetic models show that the rs10754555 genotype is asso-
ciated with significantly higher CV mortality in subjects from second-
ary prevention studies (HR 1.14, 95% CI 1.07-1.21) and in subjects
from primary prevention studies (HR 1.06, 95% ClI 1.01-1.11), with-
out significant heterogeneity (I = 22.2%, P = 0.253 for secondary pre-
vention studies and > = 0.0%, P=0999 for primary prevention
studies, Figure 5A and B). Small-study effects were excluded using the
Egger test (P=0.341 for meta-analysis on CV mortality in secondary
prevention studies).

Known NLRP3 inflammasome activators
and the association between rs10754555
and mortality

Several endogenous NLRP3 inflammasome activators have been
identified, of which ApoC3, triglycerides, and urate are of particular
importance in CVD. The release of IL-1B from PBMCs stratified
according to the rs10754555 genotype was modulated by baseline
triglyceride or urate concentrations (Supplementary material online,
Figure S4A—F and Supplementary material online, Tables $23 and $24).
Furthermore, PBMCs from heterozygous or homozygous
rs10754555 carriers released significantly higher concentrations of
IL-1B  after stimulation of ApoC3 or monosodium urate
(Supplementary material online, Figure S5). Therefore, we assessed
the association between rs10754555 and CV mortality with respect
to ApoC3, triglyceride, or urate plasma levels. In LURIC, rs10754555

was only associated with CV mortality in subjects with high ApoC3
and triglyceride plasma levels (i.e. in the 4th quartile, Figure 6A and B
and Supplementary material online, Tables $25 and $26). This was
confirmed in subjects of the UKBiobank and was independent of age
and also present in subjects with elevated triglycerides due to SNPs
in the APOC3 gene locus (Figure 6B and Supplementary material on-
line, Tables S27-530). Vice versa, in UKBiobank, triglyceride plasma
levels were associated with higher CV mortality (HR 1.17, 95% ClI
1.08-1.26) in the total population, with the strongest effect in homo-
zygous rs10754555 carriers (HR 1.57, 95% CI 1.30-1.90;
Supplementary material online, Table S37). Similar results were
obtained when participants of LURIC and UKBiobank were dicho-
tomized according to urate plasma levels or carriers of SNPs associ-
ated with higher urate (Figure 6C and Supplementary material online,
Tables S32-S37).

Discussion

The main and novel finding of this study is that genetically determined
sterile infllmmation mediated by a specific cellular pathway (i.e.
NLRP3) associates with higher prevalence of CAD and higher CV
mortality. These associations are particularly prominent in the
younger population, in which the influence of genetic predisposition
likely predominates over lifestyle and environmental risk factors for
(premature) CVD. Moreover, these findings highlight the NLRP3
inflammasome as a pathophysiologically important pathway and a po-
tential therapeutic target.

Sterile inflammation is a hallmark of patients with atherosclerotic
CVD," with experimental data showing a pivotal role of the NLRP3
inflammasome. In NLRP3- and IL-13-deficient mice, atherosclerotic le-
sion formation was markedly reduced.”'® Nevertheless, the effect of
NLRP3 on atherosclerosis is dependent on the experimental athero-
sclerosis model, the type of atherogenic diet, and the gender of the
mice."® NLRP3 inflammasome activation and subsequently enhanced
IL-1B production have been linked to maladaptive vascular remodel-
ling after injury and adverse endothelial activation.'”'® Acceleration
of atherosclerosis by clonal haematopoiesis is partially mediated by
NLRP3-dependent IL-1B secretion'®?° and attenuated in subjects
with genetic IL-6 signalling deficiency due to missense mutations of
the IL-6 receptor.?’

Our study links genetically driven inflammation with CVD preva-
lence and outcomes. An intronic variant within the NLRP3 locus
has been identified, which is not associated with other CV risk fac-
tors or alterations in lipids, but appears to specifically increase sys-
temic (micro)inflammation. rs10754555 represents an intronic
NLRP3 variant, which is scored as NLRP3 eQTL by the provided
evidence. Moreover, rs10754555 maps with promoter and enhan-
cer histone marks, and with DNAse I-sensitive regions. This indi-
cates that rs10754555 might indeed associate with increased
NLRP3 mRNA transcription. Accordingly, rs10754555 was identi-
fied as NLRP3 eQTL in whole blood and PBMCs in the eQTLGen
consortium. Importantly, our experimental studies show that the
rs10754555 genotype is associated with higher NLRP3 mRNA ex-
pression, higher IL-18 plasma levels, increased ASC speck forma-
tion and infllmmasome activation in human monocyte-enriched
PBMCs, which represent a major inflammatory effector cell type in
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Figure 4 Risk of coronary artery disease as a function of rs10754555 genotype. (A) Odds ratios for prevalent coronary artery disease and severe
coronary artery disease (visual stenosis >50% on coronary angiography) according to rs10754555 genotype in 3061 participants of the LURIC study

divided into two groups at age of 60 years (first tertile of age) and (B) in a meta-analysis of 12 076 participants with individual patient data available
included in GerMIFS. Results are adjusted for age and sex.

blood.” Moreover, we have shown that PBMCs from rs10754555
G allele carriers suppressed re-endothelialization in humanized
mice. The release of IL-6 and TNF from monocytes treated with
known NLRP3 activators was not linked to the rs10754555 carrier

status. This indicates that this genetic variant is not associated with
unspecific pro-inflammatory cell activation, but specifically with
NLRP3 inflammasome activation.rs10754555 was only associated
with higher risk for CAD in subjects aged <60 years. This SNP—age
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Figure 5 Risk of cardiovascular mortality as a function of rs10754555 genotype. Random-effects meta-analysis on cardiovascular mortality associ-
ated with rs10754555 genotype in (A) secondary and (B) primary prevention cohorts/studies. Shown are the hazard ratios for cardiovascular mortal-
ity associated with rs10754555 NLRP3 variant in 33 488 participants from eight studies comprising patients with prevalent coronary artery disease
(i.e. secondary prevention) and in 492 603 participants from two studies from the general population. Analyses from each individual study were

adjusted for age and gender.

interaction was confirmed in the GerMIFS studies and by applying
the same age cut-off. SNP—environment interactions and in particu-
lar SNP—age interactions were reported for CVD-relevant SNPs
but also for SNPs in genes involved in inflammation such as
IL1RL1.2*72> This observation points to an interaction between age
and NLRP3 activation. Although the NLRP3 inflammasome is

associated with a functional decline in aging,**?” NLRP3 gene ex-
pression and NLRP3 inflammasome activation have been reported
to decline with age.?®*’ Moreover, we found that the percentage
of heterozygous and homozygous rs10754555 carriers decreased
with increasing age, which could explain the lack of association be-
tween rs10754555 and CAD in the elderly.
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Figure 6 Apolipoprotein C3, triglycerides, and urate modulate the association between rs10754555 and cardiovascular mortality. (A) Association
between rs10754555 genotype and cardiovascular mortality in 3061 participants of the LURIC study divided in subjects with low (<17.3 mg/dL,
Quartiles 1-3) and high (>17.3 mg/dL, Quartile 4) apolipoprotein C3 plasma levels. (B) Association between rs10754555 genotype and cardiovascu-
lar mortality in the LURIC study and in 483 258 participants of UKBiobank divided into subjects with low (<201 mg/dL, Quartiles 1-3) and high
(>201 mg/dL, Quartile 4) triglyceride plasma levels. (C) Association between rs10754555 genotype and cardiovascular mortality in LURIC and
UKBiobank divided into subjects with low (<5.1 mg/dL, Quartiles 1-3) and high (>5.1 mg/dL, Quartile 4) urate plasma levels. Interaction refers to the
interaction term between apolipoprotein C3, triglycerides, or urate and rs10754555 included in the Cox regression models.

Importantly, rs10754555 is associated with CV mortality but not
mortality related to infection or cancer. Our validation cohorts com-
prise a wide range of different patient populations including patients
with prevalent CAD as well as subjects from the general population.
Across these studies, the rs10754555 NLRP3 variant was consistently
associated with increased CV mortality. Moreover, the high

frequency of the risk allele (MAF 39.9%) indicates that increasedAQI2]
NLRP3 inflammasome activity might contribute substantially to CV
mortality on the population level. In agreement with the pre-clinical
data on the association between NLRP3 inflammasome activation
and atherosclerosis,” our study shows that the rs10754555-mediated
increase in all-cause mortality is mainly driven by CV deaths. These



J_ID:  Customer A_ID: EHAB107 Copyedited by: Manuscript Category: Translational Research Cadmus Art: OP-EH

NOT FOR

PUBLIC RELEAS

12

SJ. Schunk et al.

data highlight an important role of the innate immune system in the
pathophysiology of CVD. Similar to NLRP3, gain-of-function muta-
tions within the IL-6 receptor locus were found to be associated with
increased risk for CAD.3%*1

Indeed, in animal studies, inhibition of the NLRP3 inflammasome
by the selective, small-molecule inhibitor MCC950 reduced experi-
mental autoimmune encephalomyelitis and myocardial infarction.?**?
Comepelling evidence for the benefit of therapeutically targeting
NLRP3-dependent pathways is provided by studies using the mono-
clonal, IL-1B-targeting antibody canakinumab. In patients after Ml
with persistently elevated hsCRP, canakinumab lowered the rate of
recurrent CV events by 15%, when 150mg of canakinumab was
administered.”" Post hoc analyses of the CANTOS trial revealed per-
sistently elevated levels of the NLRP3-dependent cytokine IL-18,
which are unaffected by canakinumab treatment and still associated
with future CV events.>* Therefore, inhibition of the NLRP3 inflam-
masome or its assembly in contrast to the specific inhibition of one
effector cytokine could potentially provide a stronger reduction in
CV events. Nevertheless, IL-1f release can also be induced by other
inflammasome sensors such as absent in melanoma 2 (AlM2), which
is activated by double-stranded DNA by exogenous pathogens and
also during tissue damage.®® In addition to canakinumab, treatment
with colchicine, which modulates the NLRP3 inflammasome, reduces
CV events in patients post-Ml with a stronger effect as compared to
canakinumab."? Since treatment with canakinumab or colchicine is
associated with potential serious adverse events, strategies to select
patients for targeted treatment are necessary. Screening for genetic
variants associated with NLRP3 activation and subsequently elevated
IL-1B and IL-18 may help to identify subjects with increased risk for
CV events—especially at young age—as a result of sustained (micro)-
inflammation particularly when plasma levels of known infllmma-
some activators such as ApoC3, triglycerides, or urate are elevated.

Some limitations of our study should be considered. Although
our results highlight the NLRP3 inflammasome as a potential fac-
tor promoting CV mortality, further studies are needed to prove
that in particular carriers of the rs10754555 NLRP3 variant benefit
from a specific anti-inflammatory treatment. In the present study,
the NLRP3 variant rs10754555 is linked to mortality. Based on the
study designs, we cannot show an association between the mutant
carrier status and non-fatal CV events. The age-rs10754555 on
CAD risk could not have been validated in CARDIOGRAM due
to limited access to individual patient data. Therefore, this inter-
action was validated in the GerMIFS studies (N=6389 CAD cases
and N=5687 controls), which are part of the CARDIOGRAM
consortium.

In conclusion, this is the first study to demonstrate the association
between genetically driven inflammation and CVD by engaging a spe-
cific pro-inflammatory pathway (i.e. the NLRP3 inflammasome).
These findings set the stage for individualized treatments in subjects
with inflammation-driven high CV risk.

Supplementary material

Supplementary material is available at European Heart Journal online.
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Translational perspective

Inflammation plays a crucial role in the development of atherosclerotic cardiovascular disease (CVD). Interventional studies highlight
the NOD-like receptor protein 3 (NLRP3) inflammasome as an important mediator of CVD. Here, we report that a genetic variant
within the NLRP3 gene locus refers to the systemic pro-inflammatory state. This variant is associated with coronary artery disease risk
and cardiovascular mortality predominately in younger subjects. Therefore, genetically determined inflammation represents an import-
ant driver of atherosclerotic CVD. Identification of subjects at high inflammation-driven cardiovascular risk sets the stage for individual-

ized treatments.
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